
Team 1: Initial Project Description
Mason Wilde, Jacob Hegna, Gage Benne, Andy Monroe, Grant
Jurgensen

Project Name
Lawrence Trading Co.

Project Synopsis
An algorithmic cryptocurrency trading platform utilizing Tensorflow machine learning and
deep market data to produce successful short-term trading strategies.

Project Description
The field of algorithmic trading is already strongly established within the realm of traditional
stock exchanges. Typical strategies rely on extremely quick algorithms and low latency
connections to an exchange in order to make short-term trades. Often, algorithms are
implemented on a field-programmable gate array (FPGA) due to their speed, and the need to
trade as quickly as your competitors to maintain a viable trading strategy. These factors
combine to create a high barrier of entry into algorithmic trading on traditional exchanges.

In contrast, algorithmic trading of cryptocurrency is relatively undeveloped, and therefore
presents a strong opportunity to enter while competition is thin. Cryptocurrency exchanges are
hosted on the internet, which inherently creates a more even playing field than traditional
exchanges. Where trades can be made in a matter of nanoseconds on traditional exchanges
with direct connections, internet latency will be much higher for all parties. This also means we
will need to make strong changes to established techniques in algorithmic trading, as we cannot
assume low latency access to the exchange, and we cannot assume quicker access than our
competitors.

The end result will be a program which trades cryptocurrencies through an internet exchange
based on a machine learning algorithm, trained on market history data we have collected.

Project Milestones
First Semester

1. Collection of raw cryptocurrency market trading data
2. Manual modelling and analyzing / determining market indicators
3. Tensorflow, and general machine learning integration beginnings

Second Semester

1. Production and validation of generated algorithms from collected data
2. Cryptocurrency market integration
3. Production and validation of generated algorithms from real-time cryptocurrency market
4. Putting money on the line and verifying results

Project Budget
This project will primarily utilize Google’s open source machine learning framework: Tensorflow.
Open source programming languages coupled alongside the machine learning framework such
as Python and C++ mean very little implementation costs. That being said, there may be costs
associated with hosting certain components of the project on Amazon Web Services, as well
possible costs involving automated trading at high frequencies on the open cryptocurrency
markets. (There is also a stage in which we put our own money in the algorithmic trading
platform, we will not include this in the budget.)

Work Plan
As of this point, clear roles have yet to be determined due to the nature of the project’s
exploratory intent. This project was undertook in attempts to become more familiar with
interesting growing fields in computer science not taught in our undergraduate careers. That
said, strengths of each team member will be a guide to who will take on what component of the
project. Mason has had experience with machine learning algorithms, and Jacob has had
experience with exchange markets. The entire team has had extensive experience in many
facets of computer science, and the team will build on these strengths to determine the most
optimal work allocation.

Gantt Chart

Task Start Finish Assigned Duration

Project proposal early-October mid-October all < 1 week

Video project proposal preparation mid-October mid-October all < 1 week

Collection of raw cryptocurrency
market trading data mid-September mid-February Jacob / all ongoing

Cryptocurrency exchange
research mid-October early-November all < 2 weeks

Manual modelling mid-October mid-November
Jacob, Andy
/ all < 4 weeks

Analyzing manual modeling mid-October mid-November all < 2 weeks

Researching market indicators early-November mid-November
Grant,
Mason / all < 2 weeks

Tensorflow research mid-November late-December all ~ 1 month

Tensorflow and general machine
learning integration mid-November late-February all ~ 2 months

Data formatting to support
machine learning attempts mid-December mid-January

Grant, Jacob
/ all < 2 weeks

Assisted algorithm development
from collected data mid-January mid-February all ~ 1 month

Validation and correction of
generated algorithms mid-January mid-February all ~ 1 month

Cryptocurrency market integration early-February late-March
Gage, Andy
/ all < 2 months

Production and validation of
generated algorithms from
real-time cryptocurrency market early-March late-March Andy / all < 2 weeks

Putting money on the line and
verifying results late-March early-April all < 1 week

Project documentation mid-October mid-April
Gage,
Mason / all ongoing

Public presentation preparation mid-Mar mid-April all < 1 week

Early
Sep.

Mid
Sep.

Late
Sep.

Early
Oct.

Mid
Oct.

Late
Oct.

Early
Nov.

Mid
Nov.

Late
Nov.

Early
Dec.

Mid
Dec.

Late
Dec.

Early
Jan.

Mid
Jan.

Late
Jan.

Early
Feb.

Mid
Feb.

Late
Feb.

Early
Mar.

Mid
Mar.

Late
Mar.

Early
Apr.

Mid
Apr.

Project proposal

Video project proposal preparation
Collection of raw cryptocurrency market trading
data

Cryptocurrency exchange research

Manual modelling

Analyzing manual modeling

Researching market indicators

Tensorflow research
Tensorflow and general machine learning
integration
Data formatting to support machine learning
attempts
Assisted algorithm development from collected
data
Validation and correction of generated
algorithms

Cryptocurrency market integration
Production and validation of generated
algorithms from real-time cryptocurrency market

Putting money on the line and verifying results

Project documentation

Public presentation preparation

Preliminary Project Design
We have set some technical limitations on ourselves in order to keep the project focused and on
topic. We have decided to focus strongly on C++ and Python for our languages. C++ was
chosen due to its power, efficiency, and popularity, both within the group and industry-wide. This
is the language we will use for our computationally significant and time-sensitive components.
Python will be used in less computational sections of the project on account of its ease of use,
as well as its incredible external libraries such as TensorFlow. Note that TensorFlow and many
other Python libraries are written in lower level languages and merely expose a Python calling
interface. Likewise, we will use PyBind to establish our interoperability between C++ and
Python.

In particular, we will aim to have much of the trading infrastructure be implemented in C++, and
do market/strategy research in Python. For example, we will implement:

● Market data feeds/API access
● Trade execution
● Risk (keeping track of the amount of money exposed to various cryptos, with the ability

to override trades from the execution engine if they over-expose us. For example, if two
different trading strategies each decide to be long on Ripple, the risk platform might stop
the second trade because too much money would be dependent on that asset)

In C++. We will aim to implement things like a simulated trading environment, historical
backtesting, and database interaction in Python, as it is easier to get up-and-running in Python
and those features depend significantly less on low-latency code.

In live-trading, our infrastructure will resemble:

In reality, we will likely have different/more exchanges we listen to for marketdata. We will use
(at least) two databases, one which records the trades that our system made, and one that
records every piece of market data using a uniform format, so we can simulate trading days
later. Through live testing, we will determine which exchange has the deepest liquidity for our
trades (this is important, as in a low-liquidity exchange, incoming price data might not match
outgoing execution prices).

Our simulation environment will look nearly identical, with minor changes:

The trading algorithms, risk monitor, and execution engine will be identical to our live
environment (the only difference is that will instantiate the execution engine and trading
strategies with the testing objects, instead of their live counterparts. Dependency injection
allows us to abstract away information about the actual exchanges, and instead only worry
about the incoming/outgoing data). We will just be replaying historical market data from the
database. We will use a simulated exchange that records things like profit/loss, slippage,
Sharpe ratio, and volatility of our profits. The historical testing will be not only for training our ML
models, but as to do basic regression analysis. A core trading strategy will also be exploiting
correlations in different crypto prices. For example, an early iteration of our code produced this
graph (using matplotlib) which shows a price trend within Ethereum and Ripple (adjusted for the
scale of the prices):

Which shows the prices are clearly correlated. If we can find a lagging indicator for one of the
prices in terms of the other, we can predict price changes and trade accordingly.

In addition, we will attempt to support the Linux and macOS operating systems. This restriction
is not self-imposed, but rather a reflection of our development environments and final production
environment. The team is working on a combination of Ubuntu and macOS, and we hope to run
this software on Amazon Web Services, which supports a variety of Linux distributions.
Fortunately, these operating systems are relatively simple to co-develop for on account of their
shared heritage and near POSIX compliance.

Finally, we are constrained by the libraries available to us. Thankfully, there is a myriad of
powerful open source libraries such as TensorFlow that are available to be used freely.
Furthermore, there are libraries such as matplotlib and pybind which allow us to streamlight data
analytics and interaction between C++ and Python codebases.

On the business side, we are constrained by our schedule. The project has predefined
deadlines, and we are also limited by the availability of the team members and external time
commitments. Together, these set the scope of our project, and disallow us from expanding it
any further. Many trading teams take years to set up their core infrastructure and
testing/learning environments - clearly, we will not be able to have this much flexibility, so we will
have to skip some features. For example, many trading teams have a system which
automatically takes the recorded market data from that day of trading, updates their trading
models overnight, and then executes the new trading models the next day with no programmer
interaction. This frees the developers to work on new strategies. In contrast, we will likely have

to manually re-train our models on new data, and re-deploy the updated strategies to the trading
server.

Our budget will determine where we are able to run our code, the third party software which we
can license, and our ability to trade cryptocurrencies. We hope to acquire the funding to deploy
and maintain our project on Amazon Web Services. We will likely be able to rely totally on open
source and similarly licensed free software. However, we will need to interface with
cryptocurrency exchanges, which typically have fees associated with making a trade. Finally, we
will require initial funds in order to purchase cryptocurrency for our program to participate in real
trades. In order to save money, we will attempt to tune and train our algorithms throughout
development by simulating trades. Using real data, we would record trades the algorithm would
make in real-time, but without actually trading. We would then go back over our trades and
evaluate how successful the algorithm would have been. This is a significant constraint,
because we cannot perfectly simulate how a real trade would play out. We will need to make
assumptions on latency, and how our trades would actively affect the exchange, if at all.

Ethical and Intellectual Property Issues
Ethically, the primary issue of the project relates to its contributions to society as a whole. At its
core, the goal of the project is to maximize profitability for the people using the algorithm to
trade cryptocurrencies. In this regard, the project will only directly benefit its creators and will
have little to no positive effect on the rest of society. Concerns regarding negative effects to
society are also present. Simply put, the cryptocurrency market is a competitive environment,
and one party cannot move up without another moving down. Some refer to algorithmic trading
as a tax on retail investors, as the bots can get the best deals faster than any human ever could.
As the project is contained to cryptocurrencies rather than traditional stocks, this issue is less
concerning, but it still warrants mention. Ultimately, the potential negative impacts of the project
are minimal, while the benefits are potentially very high, if even for only a small group of people,
so we believe it is ethical.

Intellectual property will be slightly complicated for the project. There are two primary areas that
will require care to avoid any infringement. First, the trading algorithm itself will need to be fairly
unique. There are numerous sources of trading algorithms for the stock market available online
in various developer blogs, research articles, and other media. Most of this material is not
obviously licensed in any way, but it is also generally only a high level description of the
algorithm or technique. As long as no actual code is reused, use of the ideas available online
will be safe. Second, the machine learning algorithms used to train and predict information
about trades will be a mix of available tools and original code. Luckily, ML tools such as Scikit
and Tensorflow are very generous with their licensing, however, it must be verified that any
tools we use allow financial gain from their use.

Updated October 22, 2018: Finalized project proposal by adding project budget, work plan, gantt chart, preliminary project design,

as well as ethical and intellectual property issues.

